
Extraordinary Substrings
Hackerrank Solution

M Mosston

Cracking the Code: An In-Depth Guide to the
Extraordinary Substrings HackerRank
Solution

So, you've stumbled upon the "Extraordinary Substrings" problem on HackerRank. It's a fun challenge
that tests your understanding of string manipulation and potentially, dynamic programming. Don't
worry, we're going to break it down step-by-step, from understanding the problem to crafting a robust
and efficient solution. This isn't just a solution; it's a journey into the world of algorithmic thinking.

Understanding the Problem:

The core of the "Extraordinary Substrings" problem (the specific phrasing might vary slightly
depending on the platform's version) revolves around identifying substrings within a given string that
meet a specific criterion: each character in the substring must appear an odd number of times. Let's
illustrate with an example:

Consider the string "aabbcc". Substrings like "abc" or "aabbc" wouldn't qualify because some
characters appear an even number of times. However, "a", "b", "c", "aa", "bb", "cc", and "aabbcc"
would be considered extraordinary substrings. Our goal is to count all such extraordinary substrings.

Visualizing the Problem:

Imagine the string "abca". We can visualize all possible substrings and then check the character
counts for oddness:

```
a - Extraordinary (a: 1)



2 Extraordinary Substrings Hackerrank Solution Published at phytplants.com

ab - Not Extraordinary (a:1, b:1)
abc - Not Extraordinary (a:1, b:1, c:1)
abca- Extraordinary (a:2, b:1, c:1)
b - Extraordinary (b: 1)
bc - Not Extraordinary (b:1, c:1)
bca - Extraordinary (b:1, c:2, a:1)
c - Extraordinary (c: 1)
ca - Not Extraordinary (c:1, a:1)
a - Extraordinary (a: 1)

```

As you can see, manually counting these gets tedious quickly. That's where algorithmic thinking
shines!

How-To: A Step-by-Step Approach to the Solution

Several approaches can solve this problem, but a common and efficient one involves using bit
manipulation and dynamic programming. Let's break down this method:

1. Bit Manipulation Representation: We'll use a bitmask to represent the parity (even or odd) of the
character counts. Each bit in the mask corresponds to a character in the alphabet (assuming
lowercase). If a bit is set (1), the corresponding character appears an odd number of times; otherwise
(0), it appears an even number of times.

2. Dynamic Programming Approach: We’ll create a table (or dictionary) to store the count of
extraordinary substrings ending at each index of the input string. The key is to leverage the counts
calculated for previous substrings to efficiently determine the counts for the current substring.

3. Iterative Calculation: We iterate through the input string. For each character, we update the
bitmask based on its presence. If the updated bitmask has all bits set (meaning all characters in the
substring have an odd count), we increment our extraordinary substring count.

Python Code Example:

```python
def extraordinarySubstrings(s):
count = 0
mask = 0
dp = {0: 1} # Initialize dp with an empty substring having count 1

for char in s:



3 Extraordinary Substrings Hackerrank Solution Published at phytplants.com

index = ord(char) - ord('a') #Get character index (0-25)
mask ^= (1 << index) #XOR operation to toggle the bit

if mask in dp:
count += dp[mask]
dp[mask] += 1
else:
dp[mask] = 1

return count

Example usage

string = "aabbcc"
result = extraordinarySubstrings(string)
print(f"Number of extraordinary substrings in '{string}': {result}")
```

Explanation of the Code:

`ord(char) - ord('a')`: This line converts each character into its numerical index (a=0, b=1, etc.).
`mask ^= (1 << index)`: This performs a bitwise XOR operation to toggle the bit corresponding to
the current character in the `mask`.
`dp`: This dictionary stores the counts of substrings ending at each index for a particular bitmask.

Optimizations and Considerations:

Space Complexity: The space complexity of the above solution is O(2^26) in the worst case (all
possible bitmasks for a 26-letter alphabet), which can be quite large. For smaller alphabets or
constraints on input string length, this is generally acceptable. You can optimize further if space
becomes a critical factor.
Alphabet Size: The code assumes a lowercase English alphabet. You might need to adjust the `ord()`
calculations if you're working with a different character set.

Key Points Summary:

The "Extraordinary Substrings" problem focuses on counting substrings where each character appears
an odd number of times.
Bit manipulation is an efficient way to represent and update character counts.

4 Extraordinary Substrings Hackerrank Solution Published at phytplants.com

Dynamic programming significantly reduces redundant calculations, leading to an optimized solution.
Consider space complexity when dealing with large alphabets.

Frequently Asked Questions (FAQs):

1. Why use bit manipulation? Bit manipulation allows for compact and fast representation of character
counts. Checking for odd counts becomes a simple bitwise check.

2. What if the input string is very long? For extremely long strings, consider more space-efficient data
structures or techniques to handle the dynamic programming table. You might explore optimized
hashmaps or even approximation algorithms.

3. Can I solve this without dynamic programming? Yes, but it would be significantly less efficient. A
brute-force approach would require checking every possible substring, leading to an O(n^3) time
complexity (where n is the string length).

4. What if the input string contains uppercase letters? You would need to modify the code to handle
both uppercase and lowercase letters, either by converting everything to lowercase or expanding the
bitmask to include both cases.

5. How can I further optimize my solution? Analyze the code's performance with profiling tools to
identify bottlenecks. Consider using faster data structures or exploring different algorithms if
performance is critical.

This comprehensive guide provides you with a solid understanding of the "Extraordinary Substrings"
problem and a practical, efficient solution using Python. Remember to practice and experiment with
different approaches to further refine your problem-solving skills! Happy coding!

Link Note Extraordinary
Substrings Hackerrank Solution

stop yelling and love me more please mom
positive parenting is easier than you think
jennifer n smith
sonic the hedgehog 30th anniversary celebration
ian flynn
stones of jerusalem bodie thoene

Finding sum of all integer substring using
dynamic programming Aug 13, 2022 · I was
solving Sam and substrings problem from
hackerrank. It is basically finding sum of all
substrings of a string having all integers.
Samantha and Sam are playing a numbers …

Number of Wonderful Substrings - LeetCode
Given a string word that consists of the first ten
lowercase English letters ('a' through 'j'), return
the number of wonderful non-empty substrings in
word. If the same substring appears multiple …

https://phytplants.com/files/research-papers/t4G0/home-pages/Stop_Yelling_And_Love_Me_More_Please_Mom_Positive_Parenting_Is_Easier_Than_You_Think_Jennifer_N_Smith.pdf
https://phytplants.com/files/research-papers/t4G0/home-pages/Stop_Yelling_And_Love_Me_More_Please_Mom_Positive_Parenting_Is_Easier_Than_You_Think_Jennifer_N_Smith.pdf
https://phytplants.com/files/research-papers/t4G0/home-pages/Stop_Yelling_And_Love_Me_More_Please_Mom_Positive_Parenting_Is_Easier_Than_You_Think_Jennifer_N_Smith.pdf
https://phytplants.com/files/signup-forms/F9Q7/home-pages/Sonic_The_Hedgehog_30th_Anniversary_Celebration_Ian_Flynn.pdf
https://phytplants.com/files/signup-forms/F9Q7/home-pages/Sonic_The_Hedgehog_30th_Anniversary_Celebration_Ian_Flynn.pdf
https://phytplants.com/pdf/study-guides/G1J1/fetch-php/Stones_Of_Jerusalem_Bodie_Thoene.pdf

Extraordinary Substrings Hackerrank Solution

5 Extraordinary Substrings Hackerrank Solution Published at phytplants.com

perrinod/hacker-rank-solutions: My HackerRank
Solutions - GitHub My HackerRank Solutions.
Contribute to perrinod/hacker-rank-solutions
development by creating an account on GitHub.

HackerRank: Sam and substrings - Code Review
Stack Exchange Jan 19, 2022 · Given a number
as a string, no leading zeros, determine the sum
of all integer values of substrings of the string.
Given an integer as a string, sum all of its
substrings cast as …

HackerRank Challenge - Special Substrings ·
GitHub SPECIAL [str] ||= all_substrs (str).select {
|i| palindrome? (i) } HackerRank Challenge -
Special Substrings. GitHub Gist: instantly share
code, notes, and snippets.

Sam and substrings - HackerRank Samantha
and Sam are playing a numbers game. Given a
number as a string, no leading zeros, determine
the sum of all integer values of substrings of the
string. Given an integer as a string, …

Hackerrank-Solutions/Sam and substrings
at main - GitHub Link-
https://www.hackerrank.com/challenges/sam-and
-substrings/problem #include const int mod =
1000000007; using namespace std; // Complete
the …

Sam and substrings Discussions | Algorithms -
HackerRank Each digit contributes to multiple
substrings. You can calculate the total
contribution of each digit by considering its
position in the number. Efficient Calculation: Use
a mathematical formula to …

Hackerrank-solutions/Sam and sub-strings at
master - GitHub You signed in with another tab or
window. Reload to refresh your session. You
signed out in another tab or window. Reload to
refresh your session. You switched accounts on
another tab …
Substring calculation with Java HackerRank
Solutions Calculate the result using substring ()
method and print it. This Java solution optimally
calculates substrings to tackle HackerRank
challenges. Leveraging dynamic programming
and efficient …

HackerRank_solutions/Java/Strings/Java
Substring/Solution.java … 317 efficient solutions
to HackerRank problems. Contribute to
RodneyShag/HackerRank_solutions development
by creating an account on GitHub.

Extraordinary Substrings Hackerrank
Solution [PDF] Extraordinary substrings
HackerRank solution: This comprehensive guide
delves into the intricacies of finding extraordinary
substrings within a given string, providing a
detailed …

hackerrank/contests/w3/sam-and-
substrings.java at master N [n-1] (1)*10^
(n-1) = RSum (RSum (N [j] (n-j) , j from i to n -
1) * 10^i , i from 0 to n - 1) */ public class
Solution { private final static int MOD =
1000000007; public static void main (String [] …

Hackerrank Java Substring Comparisons · GitHub
public static String getSmallestAndLargest(String
s, int k) { String smallest = ""; String largest = "";
int count=0; String[] str=new String[s.length()-
k+1]; for (int i =0;i

